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RETRIAL QUEUEING SYSTEM WITH CATASTROPHE
AND IMPATIENT CUSTOMERS

NEELAM SINGLA AND ANKITA GARG

ABSTRACT. In this paper, a retrial queueing system with catastrophe
having impatient customers is studied. If a customer (fresh/primary
customer) on arrival finds the server free, it is served immediately, oth-
erwise it joins the virtual queue known as orbit and retries from there
after a random amount of time. These retrying customers are known as
secondary customers. Two types of impatience are considered.

(i) The primary customers on finding the busy server may leave the sys-
tem without joining the orbit due to impatience.

(ii)The customers who are retrying from the orbit may get impatient
and leave the system without being served.

Moreover, due to some random catastrophic failures, all the present
units in the system are deleted and it also causes the break down of
the system. Repair of the failed system starts immediately. Primary
and secondary customers follow the Poisson process. Catastrophe oc-
curs following the Poisson process. Service times and repair times are
distributed exponentially. Time-dependent probabilities for the exact
number of arrivals in the system, departures after taking service from
the system, and number of customers in orbit when the server is idle
or busy are obtained. The probabilities of system being under repair
are also obtained. Verification of results is done. Numerical results
are generated and represented graphically to study the effect of various
parameters.
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1. INTRODUCTION

Queueing models play an important role in modeling many real life situ-
ations. In queueing literature, we have studied the models with finite and
infinite waiting capacity. In models with infinite waiting capacity, customers
wait indefinitely before being served. However in today’s fast-paced world,
people are not willing to wait and they leave the service area forever. There
are some situations where the customers on encountering a busy server, in-
stead of leaving the service area forever, tries again after some time to get
service. The customers who are retrying for service are known as retrial
customers or secondary customers and the associated systems are known as
retrial queueing systems. In such systems if a customer does not get service
immediately, he temporarily leaves the service area and joins the virtual
queue known as orbit and retries for service after a random amount of time.
The retrial queueing models are applicable in telecommunication systems,
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computer networks, call centers and in data transmission, etc.

A simple example of retrial queueing systems can be seen in call centers
where when customers call, if they are able to connect to a call agent, they
are answered immediately. Otherwise, they call again after some time.

In recent years many researchers worked on retrial queueing systems. [1] is
the work done on retrial queues in its early stages. [2] discussed some impor-
tant single server retrial queueing models and represented analytic results.
[3] analyzed the single server retrial queue with finite number of sources and
established customer’s arrival distribution, busy period and waiting time
process. Since traffic intensity fluctuates in real-world situations, there-
fore determining transient solutions is crucial for analyzing system behavior.
Traditional transient results for the M/M/1, M/M/c, and M/G/1 queues
offer limited insights into a queueing system’s behavior over a fixed oper-
ation time ¢. While the probability P,(t) indicates the distribution of the
number in the system at time t, it doesn’t practically reveal how the system
has been regulated up to that point. [4] was the first who introduced the
concept of two-state by obtaining a closed form solution for the probability
that exactly ¢ arrivals and j services occur over a time interval of length ¢ in
‘Some New Results for the M/M/1 Queue’. [5] obtained the time dependent
probabilities of exactly 4 arrivals and j departures by time ¢ for M/M/1
queueing model with bernoulli schedule and multiple working vacations. [6]
published ‘Performance analysis of a two-state queueing model with retri-
als’ in which time dependent probabilities for exact number of arrivals and
departures from the system by time ¢ when the server is free or busy are
obtained.

An explanation of the retrial queueing system with impatient customers is
shown in the following diagram:

Does not join
Orbit due to impatience

Leaves Orbit
due to

Primary A
Arrivals  EE—

impatience

6(1-a)

Is Server
Free?

Departure
(leaves after service)

FIGURE 1. Structure of a Retrial Queueing System having
impatient customers.

Recently, researchers have focused their attention on catastrophes in re-
trial queueing models due to their applications in computer and communi-
cation systems. The word catastrophe refers to a sudden, unexpected failure
of a machine, computer network, electronic system, communication system,
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etc. Catastrophes occur randomly, deleting all customers present in the sys-
tem and inactivating the service facilities. Catastrophe resets the system
from current state to failed state at random time intervals. Catastrophe
may come from outside the system or from another service station. Retrial
queueing models with catastrophe have applications in call centers, com-
puter networks and in telecommunication systems that depend on satellites.
Thus the analysis of retrial queueing systems with catastrophe is very im-
portant from the application point of view. The loss of customers due to
these breakdowns (also referred to as a kind of negative arrivals) was first
introduced by [7]. A lot of work on queueing systems with catastrophe can
be found in [8] and [9]. [10] discussed mean queue length and the asymp-
totic behavior of the probability of server being free. Also the steady state
probabilities are obtained. [11] worked on M/M/1 queueing system with
catastrophe and transient solution for the system with server failure and
non-zero repair time is obtained.

A basic example of retrial queueing system with catastrophe is in call cen-
ters where if customers are able to reach a live negotiator immediately upon
making a call, they are answered else they repeat the call after a couple
of minutes. Furthermore, loss of all the customers and inactivation of the
server will take place as a result of an incidental power failure or a virus
attack.

On the occurrence of catastrophe when the system fails, it is repaired im-
mediately and after getting repaired, it comes back to its working position
and becomes ready to accept new customers. Following diagram shows the
structure of retrial queueing system with catastrophe.

Secondary Arrivals

Server breakdown

Failed State

FIGURE 2. Structure of a Retrial Queue with Catastrophe.

[12] analyzed ‘Computation of the limiting distribution in queueing sys-
tems with repeated attempts and disasters’ in which a numerically stable
recursion scheme for the state probabilities is derived. Steady state and
time dependent solutions for single server retrial queue with catastrophe
when the server is idle or busy are obtained in [13].

Retrial queueing systems are also affected by a phenomenon i.e., impatience
of customers. Impatience can be of two types:

(i) Sometimes a customer on getting busy server does not want to join the
orbit due to impatience and leaves the system without being served.
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(ii) While retrying from the orbit if a customer finds busy server again and
again then he become impatient and leaves the system without getting ser-
vice.

In the first case customers do not join the orbit and in the second case cus-
tomers leave the system after waiting some time for service in the orbit. [14]
specifically discussed how to make a decision while waiting in the queue, the
probable effect of this decision and the behavior of a queue in which all per-
sons are employing such a procedure. [15] studied multi-server markovian
model where the effect of customer’s impatience and retrial is evaluated. [16]
studied queueing systems with balking and reneging and obtained steady-
state solutions. [17] analyzed a single server retrial queueing model with
impatient customers. They obtained time dependent probabilities for exact
number of arrivals and departures from the system by time ¢ when the server
is idle or busy by solving difference-differential equations recursively. [18]
obtained time dependent probabilities for two-state feedback retrial queue-
ing system having two heterogeneous servers and impatient customers.

An example of retrial queue with catastrophe and impatient customers can
be observed in a bank branch. A bank has several tellers serving customers
who arrive to perform various transactions. If a customer on arrival finds
the server free, it is served immediately. However, if there is a very long
queue then he may decide to leave immediately and not to retry for service
due to his impatient behavior. On the other hand, if a customer initially
joins the orbit but becomes impatient after making several unsuccessful at-
tempts to get service, he may decide to leave the orbit before being served.
In this scenario, a catastrophic event like a system crash, security breaches
may occur which forces all customers in the system to be removed.

In this paper, we determine the time-dependent probabilities for the exact
number of arrivals in the system, the exact number of departed units after
receiving service, and the exact number of customers in the orbit by time ¢
when the server is either idle or busy in a single server retrial queueing sys-
tem with catastrophes and impatient customers. Additionally, we calculate
the probability of the system being under repair when it fails due to random
catastrophic events. Alongside these theoretical results, we provide graphi-
cal numerical results to examine the behavior of probabilities with respect
to average service times. We also conduct sensitivity analysis to investigate
the impact of various parameters on the time-dependent probabilities.

The paper has been organized in the following sections:

In section 2, the complete mathematical description of the model is defined.
Also, the difference-differential equations are derived in this section. Math-
ematical analysis of the model is done in section 3 in which we obtained the
recursive probabilities. Transient state probabilities and the probability of
server being under repair are obtained in section 4. In section 5, verification
of results is done. The numerical results are obtained and represented graph-
ically in section 6. Sensitivity analysis is performed in section 7. Section 8
discusses the conclusion. Finally the references are listed.
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2. MODEL DESCRIPTION

In this paper, a single server retrial queueing system with catastrophe
having impatient customers is discussed. The primary customers arrive at
the system according to Poisson process. On arrival if a customer finds the
server free, it is served immediately and departs from the system after get-
ting service. However, if the server is not free then the customer leaves the
system without getting service due to impatience with probability (1 — )
and joins the orbit with probability 8 and retries from there after a random
amount of time. While retrying from the orbit, if a customer finds server
free it is served else it may leave the system due to impatience with prob-
ability (1 — «) and retries again with probability o. Moreover, catastrophe
occurs at the system and cause system failure. The failed system is repaired
immediately.

Assumptions: The underlying assumptions of the model are given below:

e The primary customers arrive at the system following Poisson pro-
cess with mean arrival rate .

e The retrying customers retry from the orbit following Poisson process
with mean retrial rate 6.

e Service times are distributed exponentially with parameter pu.

e Catastrophe occurs at the system following Poisson process with
mean rate &.

e Repair times follow exponential distribution with parameter 7. Fur-
ther, it is assumed that during repair time no arrival take place.

Also, the interarrival times, service times, as well as repair times are statis-
tically independent.

Laplace transformation f(s) of f(t) is given by:
f(s) = /00 e St f(t)dt; Re(s) >0
0
If L7Hf(s)} = F(t) and L™Yg(s)} = G(t) then

¢
L™ f(s)g(s)} :/ F(u)G(t —u)du=F « G
0
F % G is called the convolution of F' and G.

2.1. Notations. PZ(S)k(t) = Probability that there are exactly ¢ number of
arrivals in the system, j number of units departed from the system after tak-
ing the service, k number of units in the orbit by time ¢ and the server is free.
Pl
system, j number of units departed from the system after taking the ser-
vice, k number of units in the orbit by time ¢ and the server is busy.

(t) = Probability that there are exactly ¢ number of arrivals in the

Qi ;(t) = Probability that there are exactly ¢ number of arrivals, j num-
ber of units departed from the system after taking service and the system
is under repair by time t.
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P; ; 1(t) = Probability that there are exactly 4 arrivals in the system, j num-
ber of units departed from the system after taking the service, k¥ number of
units in the orbit by time ¢.

Pyyalt) = Py + PO Viijk i 5k
and  PO(t)=0,i<jk  PO(t)=0, i<jk

Initially
Pio =1 PO0y=0 P 0)=0,i4k#0;  Qi;(0)=0 Vij;

2.2. Difference-Differential Equations.

(1)
d 0 ) pm L
g Diie(®) = A+ &+ RO 13 (8) + p(1 = b04) Py (8) + 700k Qig(8) 127,k 20
d
FPL(0) = —(AB 4+ &+ RO = ) PL(0) + A0k P} o (8) + A8
(2)
(1= 004) P g s () i>1,k>0
Lpm 1y = —(a k0(1 — )P, (1) + AP AB(1 — 6) PV t
dt i,j,k()— AB+p+E+E(1—a)) w‘,()"‘ 1]k()+ B( 0.e) B 1,5 kl()
(3)
+(k+ DR (1) + (k+ 101 - )P (1) i>2,j>0k>0
(4)
d i—j i—j—1
EQi,j(t) = 77-Qi,j( ) (Pz((])o +Z 1750,] Pl(?>k + Z ]Dzjk > 22] >0
k=1 k=0
where
P 1 when 7 =0
07~ 0 otherwise
and

1 when k£ =0
dox = .
0 otherwise

3. MATHEMATICAL ANALYSIS OF THE MODEL

Using the Laplace transformation f(s) of f(t) given by

f(s):/oooe‘stf(t)dt, Re(s) > 0
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in the equations (1)-(4) along with the initial conditions, we have
(5)
(5 + A+ €+ MOPGL(5) = (1 = 80,) P51 4(5) + 700k Qis(s) 025,k 20

s+ AB+ 1+ €+ KL — )Py, (s) = Mok P g1 (5) + AB(L = G0,) P o 41 (5)
6) i>1,k>0

(
(

(5+ A8+ p+ €+ k01— )P (s) = AP, 1 (5) + AB(L = Gok) Py 4y (5) + (K +1)0

(7) PO (s)+ (k+1)0(1 — ) Uml() z’>2j>0k:20

4,5,k+1
) >

MQ

i—j
(S+T)Qi,j(5) ( ,]0 +Zl_5oj 1]1@ +
k=1

=0
(8) 22] >0
Solving equations (5)-(8) recursively, we have
(9)
Qools) = S
00 (s+7)(s+A+E) —&r
(10)
(0) _ 1
Pooo(s )*8+/\+£+8+/\+£Q00( s)
(11)
P{(s) = 9JFA+€on( 5) i>1
(12)
(0) HA 5O .
leO() (9+)\+§)(9+)\ﬂ+u+§)1100()+9+)\+§Q“() 1>1
(0) pA 5O b PO
Pigols) = AT OGN+t d) Tl o )+( NI WS P Y NS M 1a(9)
(13)
po(1 — o) (1) .
T arg Y s+)\+£Q”( 9 127=2
(14)
=(0) _ 7 AB 5(1) )
Pivlﬂk(s)*s+A+§+k9 s+AB+p+E+ k01— )Pl Los-1(8) izk+lk21
(15)
5(1) (o) A (0) .
PZ"O’O(S)_S-‘F)\ﬁ-Q—IJ,-Q—gP’L 100() 7/21
(16)
B(1) (o _ A8 =(1) )
Foals) = (s+AB+p+E+kRI(1— a))Pi—lyka—l(S) i>k21
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PO p ST L B
LM“)s+A+£+k0DZ{J£<5+Aﬁ+M+§+mW1aJ ()% }

p=0

k
AB)E POy () PO (5)+ Y (AP (p + 1AL - )

p=0
(17)
k
11 : P apin(®) i>ktjj>k>1
ey S TABF p+E+mb(l —a) i=ktp,j=2p+1 = ' =
where
1 ifp=0tok
Y, =
0 ifp=Fk+1
1 ifp=0
plj )
! 1 fp=1tok
M= S At Et (-1 —a) P
pt )
fp=k+1
SEA+p+E+(p—1o(1—a) np

W e 1 e
_ _ bp(s
Pi,j,k(s) Z{Trll__[p(s+)\/j+u+§+m9(l—a)> ) }

p=0

k
AB) Py () PO L (s) + D (B P(p+ 1)0(1 - a)

p=0
(18)
k
H 1 pm (s) i>irk+1, jk>1
ey § TAG+p+E+mb(1 —a) i—k+p.j—1p+1 > . gk >
where
P98 ,
=11 fp=1tok
Ny = +5+)‘ﬁ+“+§+(17—1)0(1—a) p o
Y )
fp=Fk+1
sHM+p+E+(p—1001-a) p




Retrial queueing system with catastrophe and impatient customers

M A 5(0) o (0)
PO (s)=— 2 pO % _p
z,],()( ) S+)\ﬁ+/.1/+§ z—l,],0(8)+5+>\ﬂ+u+€ zgl( )
01 —a) ) .
1 _ >1
(9) +S+)\ﬁ+/,b+£ i,J— 11() Z>]7
(20)
A 3 (0) W ( .
Qi’o():s—l—r Pigo(s) ZPzOk 121
(21)
B g i—J _0) i—j— 171)
Qij(s) P ik +ZP } i>j>1
k=0 k=0

4. TRANSIENT SOLUTION OF THE MODEL

Taking the Inverse Laplace transform of equations (9) — (21), we obtained
the following transient state probabilities.

1/2
QQOQ)::2§{<A24—T2#-£24—2(T§4—A§——AT)) e 1200+t

(22)
1 172\ 1 -1
sinh(it{)\2 +2ME—T)+ (E+ 7')2} )]
(23)
PiQo(t) = e”OHO 4 e 4 Qo (1)
(24)
PO () = re 90 Quo (1) i>1
(ﬁ+§ ,
B B
Pz«;)o( t) = phe” MO m ! e € € } * P( )100( )+ re” A0
5t 5) (E * B)
(25)
*Qi1(1) i>1
(26)
Plg(t) = A3t pO) | (1) i>1
,(ﬁ+£ k6(1 ))
B B B
(0) C(OFELRO)E 1 e
EESDNELS
B 8 B8 B

(27)

S N () i>kt1k>1
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p €
{5+t
© = —(A+)t 1 ¢ (ﬁ p (0) —(A+E)t
Fijot) = phe - * Py (1) + pe
(55 (55
B B B B
,<E+§)t
B B
{(“ : e\ ‘ po € }*Pl(a>1 1(8) + pb(1 — a)e” OO
5+5) (5+5)
(28)
rE
1 e_<6+5)t e
R R o1 () +7e M Q () i>j>2
(5 " E) (5 " 5)
(29)
Pgh(t) = (AB)e Wtmrerhoi=ant , b (1) i>k>1
Pz'(,},)o(t) — e~ ABHpte)t F)i<—0)1,j,0(t) + ge— ABHuFOL pl((]))l ) +0(1 — )
(30)
emOFTIrOt Pi(,;)_l,l(t) 1>7>1
(31)
Qio(t) = e ™ x [pjgg(t) +3 P k(t)} i>1
k=0
(32)
i—J i—j—1
Qij(t) = e T x |:Z R(g?k(t) + Z Pz(;)k(t)] i>5>1
k=0 k=0
i . 7(E+§+m6(1—a))t
(0) _ o (RO k B B8 B B
Fraslt) = e W) {mHO (ﬁ + ¢ + mf(1 — a))mH e
BB B
m tT 1 k
Z r! n & mi(l—a) m—r+1 } * ]Di(—O)kfl,j—l,O(t) + /\/wi(/w&ke)t [Z(/\B)kip
S5
& mb(l—«)
£ 1 —('u+ + >tm—17 r
B B B L
{me (u & mo(l a))m_p+1 ¢ — !
44 r
BB B
L (0) ] 7(>\+£+k0)t|: £ k—p
P, . A A 0
(H N é N mo9(1 _ a))mpr+1} * 17k71+p,]71_’p(t) + Ape ;( B) (p B)
g B B

13 (1 —
e*(%*ﬁ*nl(ﬂ a))“”m+1“

{ ﬁ ( metlﬁ —a)>mp+2 L gl
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,n,p,T+2} *17?2—1+pj-1p(t4 + pu(k 4 1) AFEFROE

(58 1),
e \B B 8

: - * P; —( )
{E+§+Wﬂ_® L §+_Q;@E} Pijo1pa(t) + pe” AFEFRO
s B B /3 B 3
k k
k— _ 1
=P (S + 2+
g B B
u & mi(l—a) B
767(E+_+ ’ )tm pi 1 +1}*P<136+ -2 +1(t)}
r=0 ! (H é (1—a))m p=r D,J—2,p
B /3

i>k+j+1,j>k>1
ﬁélﬂ&:ﬁ)

k —
P (0) = <A><w>’“{ 11 m;(l _a>)m+1 . (M* 3

Zt_ 1 - }* O)k 1]0 +)‘Z>‘B
T

tT

_e r

m9(1—a))mp+1 Z rl
k

m= H é
P(5+5+™5

¢ mb(l-a) mfpfr+1} * Pz'(—03c—1+p,j,p(t) + Z()\ﬁ )EP(p) {
(55 05)

k
p=1 m=p—1

1% § m0(1 —a)) o
1 _<7+*+ + m—p+ o
m—ptz _ © BB g 5
(H L& mi- a)) > 0
BB B
1
( L& mi—a) )" ”2} w PO, i)+ (4 D)o A rrerhoi—at
37T 3 )
(0) b k .
*P”kﬂ +pg())\ﬂk RN (1—a{me (,u § m6’(1a)>m—p+1
S+ 2+
BB B

(ﬁ§7wu @)m
76* /B+ﬁ+ /3

a ! W
5 ( M)mp”l}”’ et ()
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(34)
i>i+k+1,4k>1

5. VERIFICATION OF RESULTS
e Taking £ =0, 7 =0 and
P(,(]))k(t) = PZ((J)) (t) where k = number of arrivals - number of departures.
P(;)k(t) = PZ(;) (t) where k = number of arrivals - number of departures - 1.

in equations (1 —4) we get,

)
LPO W) =~ (= DOPY D) + u(1 — 505) P 1 (1) i2j20
(36)
jtPfo)( 0 =—08+ PO + AR
LR =~ +pt (-5~ 160 — ) P (1) + AP, ()
+ AB(L = im0 ) P () + (i = )OP (1) + (i — )O(L — a) (1 — 6o y) P, (1)
(37)

i>1,i>757>0
where

P 1 whenit—1=17
b 0 otherwise

which coincides with the results (1-3) of [17].

Furthermore, the model given in equations (35) — (37) can be con-

verted into one-dimensional model by defining the probability U, (m)( t)
as:

U™ (t) = Probability that there are n customers in the orbit at time

t and the server is free or busy according as m =0 or 1.

when server is free, it is defined as probability:

0) (0)
U( Z P)]“'TLJ

where n = number of arrivals - number of departures.
when server is busy, it is defined as probability:

1
U(l) Z P7(+)n+1,y

where n = number of arrivals - number of departures - 1.
By using above definitions in equations (35 — 37) the equations in
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statistical equilibrium are:

413

A +n0) U = putM n>0
_ (1) — \y© (1) (0) _ (1)
AB+pu+nb(l —a)Uy” =AU, + ABU 2 + (n+1)0U, [, + (n+1)0(1 —a)U, 7, n>1
which coincides with the results (3.68) of [19]
6. NUMERICAL SOLUTION AND GRAPHICAL REPRESENTATION
Following numerical results are evaluated using MATLAB programming
A 0 ! !
for the case p = <7):0.7, n= <7) =0.6, 7 = z>=0.4, & = <§):0.3,
I I I I
a = 0.5, 5 = 0.8. By taking a look at the tables below for various time
instants ¢, it can be seen that the sum of probabilities approaches to 1.
TABLE 1. At time t =1
0 0 0 0 0 T T I I
t Pé.o),o P1(1)0 P2(1)0 P2(1),1 P2(,2>0 P1<0),0 Pz(,o)o P2(0)1 P?Eo)z QO,O QLO
110.3954 | 0.1011 | 0.0005 | 0.0128 | 0.0069 | 0.1777 | 0.0007 | 0.0385 | 0.0059 | 0.1542 | 0.0379
Q11 | Sum
0.0126 | 0.9479
TABLE 2. At time t =30
t P5(?1)0 P5<02),Q Pg,(%)o Pé(ff,o PgE()s)(] Q51 | Q52 | Q53 | Q54 | Q55 | Sum
30 | 0.0366 | 0.1036 | 0.1674 | 0.1591 | 0.0751 | 0.0278 | 0.078 | 0.1248 | 0.1175 | 0.0552 | 0.9451
TABLE 3. At time t =35
t P5(?1)0 P5(02)o P5(%)0 Pé(i)o P5(05),0 Q51 |Qs2| Qs3 | Q54 | Qs5 | Sum
351 0.0376 | 0.1065 | 0.1719 | 0.1628 | 0.0764 | 0.0283 | 0.08 | 0.1285 | 0.1212 | 0.0568 | 0.97
TABLE 4. At time t =40
t | P | P | Py | Py [P ] @sn | Qs | Qss | Qsa | Qs | Sum
401 0.038 | 0.1079 | 0.1739 | 0.1644 | 0.077 | 0.0286 | 0.0809 | 0.1303 | 0.1229 | 0.0575 | 0.9814

The probabilities against time are represented graphically in the following
figures:
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p=0.7,m=0.6, £=0.3, ¢'=04, o=0.5, p=0.8

k- —— D0

g2 T

] T reereTERee

0 3 6 9 121518 21 24 27 30 33 36 3%

t(average service time) —

FIGURE 3. Probabilities P0(,00>,0 and Pl(’ol)’0 against average ser-
vice times t.

In figure 3, probabilities Péf)o)’o and Pl(?ﬂo are plotted against times ¢. It
can be observed from the figure that the probability Po(,(z))n decreases rapidly

from its initial value 1 at ¢ = 0 whereas the probability Pl(?l),o increases from
its initial value 0 at ¢ = 0 and then decreases gradually.

0.03 -

0025 - ‘ p=07,1=0.6, £=0.3, ¢=04, o=0.5, p=0.8
+
g oo
Zo015 | — P2
e 00 ——— P
- Pl so

0.005 -

03 6 912151821 24 2730 33 36 39
t(average service times) —

FIGURE 4. Probabilities P3(01)27 P3(02)1 and P3(%)0 against av-

erage service times t.

Figure 4 shows the comparison among the probabilities Pé?l),z, P3(702)‘1 and
P§?3),0 against average service times t. Here we observe that all probabilities
increase in the starting time points and then decrease after reaching their
peak. Moreover, the probabilities attain higher values for greater number
of departures i.e., more departures, more will be the probability of server

being free.
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FIGURE 5. Probabilities P, P{4, and P}, against av-
erage service times t.

In figure 5, the probabilities P5( 1) 3 P(l)2 and P. < ) are plotted against
average service times t. It is clearly visible from the graph that the prob-
abilities increase initially and then start decreasing with time. Also the
probability of server being busy is highest for larger number of departures
when the arrivals remain constant.

7. SENSITIVITY ANALYSIS OF THE MODEL

Under this section, the effect of change in parameters of the system on
the various probabilities is studied. The data is summarized in the following
tables. In table 5, the probability Pé%{o is given for different values of p. It
can be seen that in general whenever the arrival rate per unit service time
increases the probability P(g.oo),o decreases against average service times ¢. In
table 6, the effect of catastrophe rate per unit service time on the probability
of system being under repair is studied. It is observed that the probability
of system being under repair increases with the increase in &. Similarly,
the effect of repair rate per unit service time on the probability of system
being under repair is studied in table 7. Here we notice that the probability
decreases with the increase in 7 .
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TABLE 5. Effect of p on Probabilities

p=03|p=0.5|p=0.7
t | Pioo | Pooo | Pioo
0 1 1 1
3 | 0.2861 0.1745 0.1092
6 | 0.1602 0.0772 0.0413
9 | 0.1033 0.0414 0.0196
12| 0.0678 0.0227 0.0095
15 | 0.0446 0.0124 0.0046
18 | 0.0294 0.0068 0.0022
21| 0.0193 0.0037 0.0011
24 | 0.0127 0.0021 0.0005
27 | 0.0084 0.0011 0.0003
30 | 0.0055 0.0006 0.0001
33| 0.0036 0.0003 0.0001
36 | 0.0024 0.0002 0
39| 0.0016 0.0001 0
TABLE 6. Effect of 5/ on probabilities
£ =03 £ =06 £=09
t | Q21 | Qs1 | Qu1 | Q21 | Q31 | Qa1 | Q21 | Q31 | Qan
1 | 0.0034 | 0.0005 | 0.0001 | 0.0054 | 0.0008 | 0.0001 | 0.0066 | 0.001 | 0.0001
3 10.0326 | 0.0118 | 0.0034 | 0.0417 | 0.0146 | 0.0041 | 0.0416 | 0.014 | 0.0037
6 | 0.0446 | 0.0239 | 0.0105 | 0.0611 | 0.0317 | 0.0131 | 0.0641 | 0.0318 | 0.0124
9 | 0.0365 | 0.0243 | 0.013 | 0.0606 | 0.0395 | 0.0202 | 0.0708 | 0.0441 | 0.0213
12 | 0.0261 | 0.0204 | 0.0126 | 0.0527 | 0.0406 | 0.0242 | 0.0685 | 0.0505 | 0.0286
151 0.0174 | 0.0154 | 0.0107 | 0.0424 | 0.0374 | 0.0253 | 0.0612 | 0.0519 | 0.0334
18 | 0.0111 | 0.0109 | 0.0084 | 0.0324 | 0.0321 | 0.0241 | 0.0519 | 0.0496 | 0.0356
21| 0.0068 | 0.0074 | 0.0061 | 0.0239 | 0.0261 | 0.0216 | 0.0424 | 0.0449 | 0.0355
241 0.0041 | 0.0048 | 0.0043 | 0.0171 | 0.0205 | 0.0183 | 0.0336 | 0.039 | 0.0336
27 10.0024 | 0.003 | 0.0029 | 0.0119 | 0.0155 | 0.015 | 0.026 | 0.0329 | 0.0306
30 | 0.0014 | 0.0019 | 0.0019 | 0.0082 | 0.0115 | 0.0119 | 0.0198 | 0.027 | 0.027
33 | 0.0008 | 0.0011 | 0.0012 | 0.0055 | 0.0083 | 0.0092 | 0.0148 | 0.0217 | 0.0232
36 | 0.0004 | 0.0007 | 0.0008 | 0.0037 | 0.0059 | 0.007 | 0.011 |0.0172 | 0.0195
39 | 0.0002 | 0.0004 | 0.0005 | 0.0024 | 0.0042 | 0.0052 | 0.008 | 0.0134 | 0.0161
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TABLE 7. Effect of 7 on probabilities

T =0.2

T =0.4

T =0.9

Q30 | Q31 | Q32

Q3,0

Q3,1

Qs,2

Q3,0

Q3,1

Q3,2

0.0007 | 0.0005 | 0.0001

0.0007

0.0005

0.0001

0.0007

0.0005

0.0001

0.0064 | 0.0128 | 0.0085

0.0059

0.0118

0.008

0.0048

0.0099

0.0067

| W | e+

0.0094 | 0.0268 | 0.0296

0.0083

0.0239

0.0263

0.0057

0.0175

0.0197

9

0.0097 | 0.0296 | 0.0358

0.0077

0.0243

0.0297

0.0039

0.0138

0.018

12

0.0093 | 0.0289 | 0.0355

0.0062

0.0204

0.0258

0.0021

0.0081

0.0114

15

0.0084 | 0.0267 | 0.0329

0.0045

0.0154

0.0199

0.001

0.0041

0.006

18

0.0074 | 0.0237 | 0.0292

0.0031

0.0109

0.0142

0.0004

0.0019

0.0028

21

0.0063 | 0.0204 | 0.0251

0.0021

0.0074

0.0096

0.0002

0.0008

0.0012

24

0.0053 | 0.0171 | 0.0211

0.0013

0.0048

0.0063

0.0001

0.0003

0.0005

27

0.0043 | 0.0141 | 0.0174

0.0008

0.003

0.004

0

0.0001

0.0002

30

0.0035 | 0.0115 | 0.0141

0.0005

0.0019

0.0025

0

0.0001

33

0.0028 | 0.0092 | 0.0113

0.0003

0.0011

0.0015

0

36

0.0022 | 0.0073 | 0.009

0.0002

0.0007

0.0009

0

39

0.0017 | 0.0057 | 0.007

0.0001

0.0004

0.0005

o|o|olo

0
0
0

0

This can also be shown graphically in following figures:

| n=0.6, =03, '=04, 5=0 5, p=0.8

03
0.2
01
0

——p=03
—=—p=0.5
p=0.7

t(average service times) —

FIGURE 6. Probability By,
average service times ¢.

0)

for different values of p against

In figure 6, the probability Pé’oo),o is plotted for different values of p against
average service times t. It can be seen that whenever the value of p increases,
the probability of having zero customers in the system decreases.
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FIGURE 7. Probability of system being under repair for dif-

ferent values of ¢

In figure 7, the probability of system being under repair is shown when
the number of arrivals is three and number of services is one for different
values of ¢ (catastrophe rate per unit service time). It is observed from the
graph that higher the value of 5/, higher is the probability of system being

under repair.
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In figure 8, the effect of 7 (change of repair rate per unit service time)
on the probability Qs is studied. It is observed from the graph that the
probability of system being under repair decreases with the increasing values

FIGURE 8. Effect of 7 on the probability Q3 1.

of repair rate per unit service time.
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FIGURE 9. Probability Pill)j for different values of 3.

In figure 9, the probability PA&)’Q is plotted against average service times
t for different values of 5. It can be seen that the shape of the curve is
increasing in the beginning and then is decreasing after reaching the peak.
It is also observed that if the value of 5 increases, i.e., the probability with
which customers join the orbit on finding the busy server increases, the
probability PA&)’Q also increases.

0003 4

p=0.7,m=0.6, £=0.3, 7=0.4, p=0.8

0.0025 -
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ﬁooms 1 ——1a=03
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R e e
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FIGURE 10. Probability P5(’11)73 for different values of 1 — o

In figure 10, the probability P5(’11)’3 is plotted against average service times
t for different values of 1 — a. It can be seen that the probability increases
rapidly in the beginning and then decreases gradually. Moreover, it is ob-
served that if the probability with which customers leave the orbit due to
impatience increases, the probability P5(,11)73 decreases.

8. CONCLUSION

In queueing systems, customer impatience can adversely affect customer
satisfaction, operational efficiency, and overall quality of service. Many busi-
nesses and organizations that deal with queues, such as retail stores, banks,
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restaurants, transportation systems, and others, must understand and man-
age customer impatience. Incorporating strategies to address customer im-
patience in queueing systems can lead to higher customer satisfaction, im-
proved operational efficiency, and a more positive overall customer experi-
ence. In this paper, we analyzed a single server retrial queueing system with
catastrophe having impatient customers. Here we obtained transient solu-
tions for exact number of arrivals in the system, exact number of departed
units after taking service from the system and exact number of customers
in the orbit by time ¢ when the server is idle or busy. Furthermore, numer-
ical results are generated using MATLAB programming and represented
graphically. Sensitivity analysis is performed to study the effect of various
parameters on the transient probabilities.
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